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Nicolas Dobigeon,Senior Member, IEEE, and Jean-Yves Tourneret,Senior Member, IEEE

Abstract—This paper presents a fast spectral unmixing al-
gorithm based on Dykstra’s alternating projection. The pro-
posed algorithm formulates the fully constrained least squares
optimization problem associated with the spectral unmixing
task as an unconstrained regression problem followed by a
projection onto the intersection of several closed convex sets.
This projection is achieved by iteratively projecting onto each
of the convex sets individually, following Dyktra’s scheme. The
sequence thus obtained is guaranteed to converge to the sought
projection. Thanks to the preliminary matrix decomposition and
variable substitution, the projection is implemented intrinsically
in a subspace, whose dimension is very often much lower than
the number of bands. A benefit of this strategy is that the
order of the computational complexity for each projection is
decreased from quadratic to linear time. Numerical experiments
considering diverse spectral unmixing scenarios provide evidence
that the proposed algorithm competes with the state-of-the-art,
namely when the number of endmembers is relatively small, a
circumstance often observed in real hyperspectral applications.

Index Terms—spectral unmixing, fully constrained least
squares, projection onto convex sets, Dykstra’s algorithm

I. I NTRODUCTION

SPECTRAL unmixing (SU) aims at decomposing a set
of n multivariate measurementsX = [x1, . . . ,xn] into

a collection ofm elementary signaturesE = [e1, · · · , em],
usually referred to asendmembers, and estimating the relative
proportionsA = [a1, . . . ,an] of these signatures, calledabun-
dances. SU has been advocated as a relevant multivariate anal-
ysis technique in various applicative areas, including remote
sensing [1], planetology [2], microscopy [3], spectroscopy
[4] and gene expression analysis [5]. In particular, it has
demonstrated a great interest when analyzing multi-band (e.g.,
hyperspectral) images, for instance for pixel classification [6],
material quantification [7] and subpixel detection [8].

In this context, several models have been proposed in the
literature to properly describe the physical process underly-
ing the observed measurements. Under some generally mild
assumptions [9], these measurements are supposed to result
from linear combinations of the elementary spectra, according
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to the popularlinear mixing model(LMM) [10]–[12]. More
precisely, each columnxj ∈ R

nλ of the measurement matrix
X = [x1, . . . ,xn] can be regarded as a noisy linear combina-
tion of the spectral signatures leading to the following matrix
formulation

X = EA+N (1)

where

• E ∈ R
nλ×m is the endmember matrix whose columns

e1, · · · , em are the signatures of them materials,
• A ∈ R

m×n is the abundance matrix whosejth column
aj ∈ R

m contains the fractional abundances of thejth
spectral vectorxj ,

• N ∈ R
nλ×n is the additive noise matrix.

As the mixing coefficientai,j represents the proportion (or
probability of occurrence) of the theith endmember in the
jth measurement [10], [11], the abundance vectors satisfy
the followingabundance non-negativity constraint(ANC) and
abundance sum-to-one constraint(ASC)

aj ≥ 0 and 1T
maj = 1, ∀j = 1, · · · , n (2)

where ≥ means element-wise greater or equal and1T
m ∈

R
m×1 represents a vector with all ones. Accounting for all

the image pixels, the constraints (2) can be rewritten in matrix
form

A ≥ 0 and 1T
mA = 1T

n . (3)

Unsupervised linear SU boils down to estimating the end-
member matrixE and abundance matrixA from the mea-
surementsX following the LMM (1). It can be regarded as
a special instance of (constrained) blind source separation,
where the endmembers are the sources [13]. There already
exists a lot of algorithms for solving SU (the interested reader
is invited to consult [10]–[12] for comprehensive reviews
on the SU problem and existing unmixing methods). Most
of the unmixing techniques tackle the SU problem into two
successive steps. First, the endmember signatures are identified
thanks to a prior knowledge regarding the scene of interest,or
extracted from the data directly using dedicated algorithms,
such as N-FINDR [14], vertex component analysis (VCA)
[15], and successive volume maximization (SVMAX) [16].
Then, in a second step, calledinversionor supervisedSU, the
abundance matrixA is estimated given the previously identi-
fied endmember matrixE, which is the problem addressed in
this paper.

Numerous inversion algorithms have been developed in
the literature, mainly based on deterministic or statistical ap-
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proaches. Heinzet al. [17] developed a fully constrained least
squares (FCLS) algorithm by generalizing the Lawson-Hanson
non-negativity constrained least squares (NCLS) algorithm
[18]. Dobigeonet al. formulated the unmixing problem into
a Bayesian framework and proposed to draw samples from
the posterior distribution using a Markov chain Monte Carlo
algorithm [19]. This simulation-based method considers the
ANC and ASC both strictly while the computational complex-
ity is significant when compared with other optimization-based
methods. Bioucas-Diaset al. developed a sparse unmixing
algorithm by variable splitting and augmented Lagrangian
(SUnSAL) and its constrained version (C-SUnSAL), which
generalizes the unmixing problem by introducing spectral
sparsity explicitly [20]. More recently, Chouzenouxet al. [21]
proposed a primal-dual interior-point optimization algorithm
allowing for a constrained least squares (LS) estimation ap-
proach and an algorithmic structure suitable for a parallelim-
plementation on modern intensive computing devices such as
graphics processing units (GPU). Heylenet al. [22] proposed
a new algorithm based on the Dykstra’s algorithm [23] for
projections onto convex sets (POCS), with runtimes that are
competitive compared to several other techniques.

In this paper, we follow a Dykstra’s strategy for POCS to
solve the unmixing problem. Using an appropriate decompo-
sition of the endmember matrix and a variable substitution,
the unmixing problem is formulated as a projection onto the
intersection ofm + 1 convex sets (determined by ASC and
ANC) in a subspace, whose dimension is much lower than the
number of bands. The intersection ofm+1 convex sets is split
into the intersection ofm convex set pairs, which guarantees
that the abundances always live in the hyperplane governed by
ASC to accelerate the convergence of iterative projections. In
each projection, the subspace transformation yields linear or-
der (of the number of endmembers) computational operations
which decreases the complexity greatly when compared with
Heylen’s method [22].

The paper is organized as follows. In Section II, we formu-
late SU as a projection problem onto the intersection of convex
sets defined in a subspace with reduced dimensionality. We
present the proposed strategy for splitting the intersection of
m+1 convex sets into the intersection ofm convex set pairs.
Then, the Dykstra’s alternating projection is used to solvethis
projection problem, where each individual projection can be
solved analytically. The convergence and complexity analysis
of the resulting algorithm is also studied. Section III applies
the proposed algorithm to synthetic and real multi-band data.
Conclusions and future work are summarized in Section IV.

II. PROPOSEDFAST UNMIXING ALGORITHM

In this paper, we address the problem of supervised SU,
which consists of solving the following optimization problem

min
A

‖X−EA‖2F

subject to (s.t.) A ≥ 0 and 1T
mA = 1T

n

(4)

where ‖ · ‖F is the Frobenius norm. As explained in the
introduction, this problem has been considered in many ap-
plications where spectral unmixing plays a relevant role.

It is worthy to interpret this optimization problem from a
probabilistic point of view. The quadratic objective function
can be easily related to the negative log-likelihood function
associated with observationsX corrupted by an additive white
Gaussian noise. Moreover, the ANC and ASC constraints can
be regarded as a uniform distribution foraj (∀j = 1, · · · , n)
on the feasible regionA

p(aj) =

{
c if aj ∈ A
0 elsewhere

(5)

whereA =
{
a|a ≥ 0,1T

a = 1
}

and c = 1/vol(A). Thus,
minimizing (4) can be interpreted as maximizing the posterior

distribution of A with the prior p(A) =
n∏

j=1

p(aj), where

we have assumed the abundance vectorsai are a priori
independent. In this section, we will demonstrate that the
optimization problem (4) can be decomposed into an uncon-
strained optimization, more specifically an unconstrainedleast
square (LS) problem with an explicit closed form solution,
followed by a projection step that can be efficiently achieved
with the Dykstra’s alternating projection algorithm.

A. Reformulating Unmixing as a Projection Problem

Under the assumption thatE has full column rank1, it is
straightforward to show that the problem (4) is equivalent to

min
A

‖Y −DA‖2F

s.t. A ≥ 0 and 1T
mA = 1T

n

(6)

whereD is anym×m square matrix such thatETE = DTD

and
Y , (D−1)TETX. (7)

Since we usually havem ≪ nλ, then the formulation
(6) opens the door to faster solvers. Given thatETE is
positive definite, the equationETE = DTD has non-singular
solutions. In this paper, we use the Cholesky decompositionto
find a solution of that equation. Note that we have also used
solutions based on the eigendecomposition ofETE, leading
to very similar results.

DefiningU , DA andbT , 1T
mD−1, the problem (6) can

be transformed as

min
U

‖Y −U‖2F

s.t. D−1U ≥ 0 and bTU = 1T
n .

(8)

Obviously, the optimization (8) with respect to (w.r.t.)U
can be implemented in parallel for each spectral vectoruj ,
whereU = [u1, · · · ,un] anduj is the jth column ofU. In
another words, (8) can be split inton independent problems

min
u
‖yj − u‖22

s.t. D−1u ≥ 0 and bTu = 1
(9)

whereyj is thejth column ofY (∀j = 1, · · · , n).
Recall now that the Euclidean projection of a given vector

1This assumption is satisfied once the endmember spectral signatures are
linearly independent.
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v onto a closed and convex setC is defined as [24]

ΠC(u) , argmin
u

(
‖v− u‖22 + ιC(u)

)
(10)

whereιC(u) denotes the indicator function

ιC(u) =

{
0 if u ∈ C
∞ otherwise.

(11)

Therefore, the solution ûj of (9) is the projection
of yj onto the intersection of convex setsN ={
u ∈ R

m : D−1u ≥ 0
}

(associated with the initial ANC) and
S =

{
u ∈ R

m : bTu = 1
}

(associated with the initial ASC)
as follows

ûj = argmin
u
‖yj − u‖2F + ιN∩S(u)

= ΠN∩S(yj)
(12)

whereûj is thejth column of matrixÛ.

Remark. It is interesting to note thatY defined by(7) can
also be written asY = DALS whereALS ,

(
ETE

)−1
ETX

is the LS estimator associated with the unconstrained coun-
terpart of (4). Therefore,Y, Û andN ∩S correspond toX,
A andA, respectively, under the linear mapping induced by
D.

To summarize, supervised SU can be conducted following
Algorithm 1 by first transforming the observation matrix as
Y = (D−1)TETX, and then looking for the projection̂U
of Y onto N ∩ S. Finally, the abundance matrix is easily
recovered through the inverse linear mappingÂ = D−1Û.
The projection ontoN ∩ S is detailed in the next paragraph.

Algorithm 1: Fast Unmixing Algorithm
Input : X (measurements),E (endmember matrix),N , S
// Calculate the subspace transformation D

from the Cholesky decomposition

E
T
E = D

T
D

1 D← Chol
(
ETE

)
;

// Compute Y

2 Y ← D−TETX;
// Project Y onto N ∩ S (Algo. 2)

3 Û← ΠN∩S(Y);
// Calculate the abundance

4 Â← D−1Û;
Output : Â (abundance matrix)

B. Dykstra’s Projection ontoN ∩ S

While the matrixY can be computed easily and efficiently
from (7), its projection ontoN ∩S following (12) is not easy
to perform. The difficulty mainly comes from the spectral
correlation induced by the linear mappingD in the non-
negativity constraints definingN , which prevents any use of
fast algorithms similar to those introduced in [25]–[27] dedi-
cated to the projection onto the canonical simplex. However,
as this set can be regarded asm inequalities,S ∩ N can be

rewritten as the intersection ofm sets

S ∩ N =

m⋂

i=1

S ∩ Ni

by splitting N into N = N1 ∩ · · · ∩ Nm, whereNi ={
u ∈ R

m : dT
i u ≥ 0

}
anddT

i represent theith row of D−1,
i.e., D−1 = [d1, · · · ,dm]

T . Even though projecting onto
this m-intersection is difficult, projecting onto each convex
set S ∩ Ni (i = 1, . . . ,m) is easier, as it will be shown in
paragraph II-C. Based on this remark, we propose to perform
the projection ontoS ∩ N using the Dykstra’s alternating
projection algorithm, which was first proposed in [23], [28]
and has been developed to more general optimization problems
[29], [30]. More specifically, this projection is split intom it-
erative projections onto each convex setS∩Ni (i = 1, . . . ,m),
following the Dykstra’s procedure described in Algorithm 2.

Algorithm 2: Dykstra’s Projection ofY ontoS ∩ N
Input : Y, D, K
// Compute b

1 bT ← 1T
mD−1;

// Initialization

2 SetU(0)
m ← Y, Q(0)

1 = · · · = Q
(0)
m ← 0;

// Main iterations

3 for k = 1, · · · ,K do
// Projection onto S ∩ N1 (Algo. 3)

4 U
(k)
1 ← ΠS∩N1

(U
(k−1)
m +Q

(k−1)
m );

5 Q
(k)
m ← U

(k−1)
m +Q

(k−1)
m −U

(k)
1 ;

6 for i = 2, · · · ,m do
// Projection onto S ∩ Ni (Algo. 3)

7 U
(k)
i ← ΠS∩Ni

(U
(k)
i−1 +Q

(k−1)
i−1 );

8 Q
(k)
i−1 ← U

(k)
i−1 +Q

(k−1)
i−1 −U

(k)
i ;

9 end
10 end
11 Û← U

(K)
m ;

Output : Û← ΠS∩N (Y)

The motivations for projecting ontoS ∩ Ni are two-fold.
First, this projection guarantees that the vectorsûj always
satisfy the sum-to-one constraintbT ûj = 1, which implies
that these vectors never jump out from the hyperplaneS,
and thus accelerates the convergence significantly. Second, as
illustrated later, incorporating the constraintbTu = 1 does
not increase the projection computational complexity, which
means that projecting ontoS ∩ Ni is as easy as projecting
onto Ni (for i = 1, · · · ,m). The projection ontoS ∩ Ni is
described in the next paragraph.

C. Projection ontoS ∩ Ni

The main step of the Dykstra’s alternating procedure (Al-
gorithm 2) consists of computing the projectionU∗

i of a given
matrix Z onto the setS ∩Ni

U∗
i = ΠS∩Ni

(Z)

≡ [ΠS∩Ni
(z1), . . . ,ΠS∩Ni

(zn)].
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Fig. 1. Illustration of the projection ofz onto the setS ∩ N1: the setS is
defined by the vectorc ∈ S and by the vectorb orthogonal to the subspace
S − {c}; the vectoru ∈ S may be written asu = Vα+ c whereV spans
the subspaceS − {c} and α ∈ R

(m−1); the vectorz is the orthogonal
projection ofz onto S; the vectorz is the orthogonal projection ofz onto
S ∩N1, which is also the orthogonal projection ofz onto the setS ∩ N1.

Let z ∈ R
m denote a generic column ofZ. The computation

of the projectionΠS∩Ni
(z) can be achieved by solving the

following convex constrained optimization problem:

min
u
‖z− u‖22

s.t. dT
i u ≥ 0 and bTu = 1.

(13)

To solve the optimization (13), we start by removing the
constraintbTu = 1 by an appropriate change of variables.
Having in mind that the setS = {u ∈ R

m : bTu = 1 } is
a hyperplane that contains the vectorc = b/‖b‖22, then that
constraint is equivalent tou = c+Vα, whereα ∈ R

m−1 and
the columns ofV ∈ R

m×(m−1) span the subspaceS −{c} =
{u ∈ R

m : bTu = 0 }, of dimension(m − 1). The matrix
V is chosen such thatVTV = Im−1, i.e., the columns of
V are orthonormal. Fig. 1 schematizes the mentioned entities
jointly with z, the orthogonal projection ofz ontoS, andz, the
orthogonal projection ofz ontoS1∩N1. The former projection
may be written as

z ≡ ΠS(z)

= c+P(z− c) (14)

whereP ≡ VVT = Im − bbT /‖b‖22 denotes the orthogonal
projection matrix ontoS − {c}. With these objects in place,
and givenz ∈ R

m andu ∈ S, we simplify the cost function
‖z− u‖22 by introducing the projection ofz onto S and by
using the Pythagorean theorem as follows:

‖z− u‖22 = ‖z− z‖22 + ‖z− u‖22
= ‖z− z‖22 + ‖(z− c)−Vα‖22

= ‖z− z‖22 + ‖V
T (z− c)−α‖22 (15)

where the right hand term in (15) derives directly from
(14) and from the fact thatVTV = Im−1. By introducing

u = c+Vα in (13), we obtain the equivalent optimization

min
α

‖VT (z− c)−α‖22 s.t. (VTdi)
T
α ≥ −(dT

i c) (16)

which is a projection onto a half space whose solution is [24]

α
∗ = VT (z− c) + τi

VTdi

‖VTdi‖2

where

τi = max

{
0,−

dT
i V

‖VTdi‖2

(
VT (z− c)

)
−

dT
i c

‖VTdi‖2

}

= max{0,−sTi z+ fi}

with si ≡ Pdi/‖Pdi‖2, fi ≡ −dT
i c/‖Pdi‖2, and we have

used the facts that‖VTx‖2 = ‖Px‖2 andVT c = 0.
Recalling thatu = c+Vα, we obtain

z = c+VVT (z− c) + τisi

= ΠS(z) + τisi.
(17)

The interpretation of (17) is clear: the orthogonal projection of
z ontoS ∩Ni is obtained by first computingz = ΠS(z), i.e..
the projectionz onto the hyperplaneS, and then computing
z = ΠS∩Ni

(z), i.e.. the projectionz onto the intersection
S ∩ Ni. Given thatS ∩ Ni ⊂ S, then (17) is, essentially,
a consequence of a well know result: given a convex set
contained in some subspace, then the orthogonal projection
of any point in the convex set can be accomplished by first
projecting orthogonally on that subspace, and then projecting
the result on the convex set [31, Ch. 5.14].

Finally, computingU∗
i can be conducted in parallel for

each column ofZ leading to the following matrix update rule
summarized in Algorithm 3):

U∗
i = ΠS(Z) + siτ

T
i (18)

with τ
T
i ∈ R

1×n given by

τ
T
i = max{0, fi1

T
n − sTi Z}

where

fi = −
dT
i c

‖Pdi‖2
(19)

and the operatormax has to be understood in the component-
wise sense

Note that using the Karush-Kuhn-Tucker (KKT) conditions
to solve the problem (13) can also lead to this exact solution,
as described in the Appendix.

D. Convergence Analysis

The convergence of the Dykstra’s projection was first proved
in [28], where it was claimed that the sequences generated
using Dykstra’s algorithm are guaranteed to converge to the
projection of the original point onto the intersection of the
convex sets. Its convergence rate was explored later [32],
[33]. We now recall the Deutsch-Hundal theorem providing
the convergence rate of the projection onto the intersection of
m closed half-spaces.

Theorem 1 (Deutsch-Hundal, [32]; Theorem 3.8). Assuming
thatXk is thekth projected result in Dykstra’s algorithm and
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Algorithm 3: ProjectingZ ontoS ∩ Ni

Input : Z, b, di

// Calculate Pdi, si, c and fi

1 c← b/‖b‖22;
2 Pdi ← di − cbTdi;
3 si ← Pdi/‖Pdi‖2 ;
4 fi ← −dT

i c/‖Pdi‖2 ;
// Calculate τ

T

i

5 τ
T
i ← max{0, fi1T

n − sTi Z};
// Project Z onto S

6 ΠS(Z)← c1T
n +P(Z− c1T

n );
// Compute the final solution U

∗

i

7 U∗
i ← ΠS(Z) + siτ

T
i ;

Output : U∗
i

X∞ is the converged point, there exist constants0 ≤ c < 1
and ρ > 0 such that

‖Xk −X∞‖
2
F ≤ ρck (20)

for all k.

Theorem 1 demonstrates that Dykstra’s projection has a
linear convergence rate [34]. The convergence speed depends
on the constantc, which depends on the number of constraints
m and the ‘angle’ between two half-spaces [32]. To the best
of our knowledge, the explicit form ofc only exists form = 2
half-spaces and its determination form > 2 is still an open
problem [35].

E. Complexity Analysis

To summarize, the projection ontoS ∩ N can be obtained
by iteratively projecting onto them setsS∩Ni (i = 1, . . . ,m)
using a Dykstra’s projection scheme as described in Algorithm
2. The output of this algorithm converges to the projection of
the initial pointY onto S ∩ N . It is interesting to note that
the quantities denoted asΠS(Z) in Algorithm 3 needs to be
calculated only once since the projection ofZ will be itself Z
from the second projectionΠS∩N2

. This results from the fact
that the projection never jumps out from the hyperplaneS.

Moreover, the most computationally expensive part of the
proposed unmixing algorithm (Algorithm 1) is the iterative
procedure to project ontoS ∩ N , as described in Algorithm
2. For each iteration, the heaviest step is the projection onto
the intersectionS ∩ Ni summarized in Algorithm 3. With
the proposed approach, this projection only requires vector
products and sums, with a cost ofO(nm) operations, contrary
to theO(nm2) computational cost of [22]. Thus, each iteration
of Algorithm 2 has a complexity of orderO(nm2).

III. E XPERIMENTS USINGSYNTHETIC AND REAL DATA

This section compares the proposed unmixing algorithm
with several state-of-the-art unmixing algorithms, i.e.,FCLS
[17], SUNSAL [20], IPLS [21] and APU [22]. All algorithms
have been implemented using MATLAB R2014A on a com-
puter with Intel(R) Core(TM) i7-2600 CPU@3.40GHz and
8GB RAM. To conduct a fair comparison, they have been

implemented in the signal subspace without using any par-
allelization. These unmixing algorithms have been compared
using the figures of merit described in Section III-A. Several
experiments have been conducted using synthetic datasets
and are presented in Section III-B. Two real hyperspectral
(HS) datasets associated with two different applications are
considered in Section III-C. The MATLAB codes and all the
simulation results are available on the first author’s home-
page2.

A. Performance Measures

In what follows,Ât denotes the estimation ofA obtained
at timet (in seconds) for a given algorithm. Provided that the
endmember matrixE has full column rank, the solution of
(4) is unique and all the algorithms are expected to converge
to this unique solution, denoted asA⋆ , Â∞ (ignoring
numerical errors). In this work, one of the state-of-the-art
methods is run with a large number of iterations (n = 5000 in
our experiments) to guarantee that the optimal pointA⋆ has
been reached.

1) Convergence Assessment:First, different solvers de-
signed to compute the solution of (4) have been compared
w.r.t. the time they require to achieve a given accuracy. Thus,
all these algorithms have been run on the same platform and
we have evaluated the relative error (RE) betweenÂt andA⋆

as a function of the computational time defined as

REt =
‖Ât −A⋆‖2F
‖A⋆‖2F

.

2) Quality Assessment:To analyze the quality of the un-
mixing results, we have also considered the normalized mean
square error (NMSE)

NMSEt =
‖Ât −A‖2F
‖A‖2F

.

The smaller NMSEt, the better the quality of the unmixing.
Note that NMSE∞ =

‖A⋆−A‖2

F

‖A‖2

F

is a characteristic of the
objective criterion (4) and not of the algorithm.

B. Unmixing Synthetic Data

The synthetic data is generated using endmember spectra
selected from the United States Geological Survey (USGS)
digital spectral library3. These reflectance spectra consists
of L = 224 spectral bands from383nm to 2508nm. To
mitigate the impact of the intra-endmember correlation, three
different subsetsE3, E10 and E20 have been built from
this USGS library. More specifically,Eα is an endmember
matrix in which the angle between any two different columns
(endmember signatures) is larger thanα (in degree). Thus, the
smallerα, the more similar the endmembers and the higher the
conditioning number ofE. For example,E3 contains similar
endmembers with very small variations (including scalings) of
the same materials andE20 contains endmembers which are
relatively less similar. As an illustration, a random selection

2http://wei.perso.enseeiht.fr/
3http://speclab.cr.usgs.gov/spectral.lib06/
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of several endmembers fromE3 andE20 have been depicted
in Fig. 2. The abundances have been generated uniformly in
the simplexA defined by the ANC and ASC constraints.

Unless indicated, the performance of these algorithms has
been evaluated on a synthetic image of size100× 100 whose
signal to noise ratio (SNR) has been fixed to SNR=30dB and
the number of considered endmembers ism = 5.
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End 1
End 2
End 3
End 4
End 5

Fig. 2. Five endmember signatures randomly selected fromE3 (left) and
E20 (right).

1) Initialization: The proposed SUDAP, APU and FCLS
algorithms do not require any initialization contrary to SUN-
SAL and IPLS. As suggested by the authors of these two
methods, SUNSAL has been initialized with the unconstrained
LS estimator of the abundances whereas IPLS has been
initialized with the zero matrix. Note that our simulationshave
shown that both SUNSAL and IPLS are not sensitive to these
initializations.

2) Performancevs. Time: The NMSE and RE for these
five different algorithms are displayed in Fig. 3 as a function
of the execution time. These results have been obtained by
averaging the outputs of30 Monte Carlo runs. More pre-
cisely, 10 randomly selected matrices for each setE3, E10

and E20 are used to consider the different intra-endmember
correlations. All the algorithms converge to the same solution
as expected. However, as demonstrated in these two figures,
SUNSAL, APU and the proposed SUDAP are much faster
than FCLS and IPLS. From the zoomed version in Fig. 3, we
can observe that in the first iterations SUDAP converges faster
than APU and SUNSAL. More specifically, for instance, if the
respective algorithms are stopped once REt < −80dB (around
t = 50ms), SUDAP performs faster than SUNSAL and APU
and with a lower NMSEt.
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Fig. 3. NMSE (left) and RE (right)vs. time (zoomed version in top right).

3) Time vs. the Number of Endmembers:In this test, the
number of endmembersm varies from 3 to 23 while the
other parameters have been fixed to the same values as in

Section III-B2 (SNR= 30dB andn = 1002). The endmember
signatures have been selected fromE10 (similar results have
been observed when usingE3 andE20). All the algorithms
have been stopped oncêAt reaches the same convergence
criterion REt < −100dB. The proposed SUDAP has been
compared with the two most competitive algorithms SUNSAL
and APU. The final REs and the corresponding computational
times versusm have been reported in Fig. 4, including error
bars to monitor the stability of the algorithms (these results
have been computed from30 Monte Carlo runs).
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Fig. 4. RE (left) and time (right)vs. number of endmembers for SUNSAL,
APU and SUDAP (REt < −100dB).

Fig. 4 (left) shows that all the algorithms have converged to
a point satisfying REt < −100dB and that SUDAP and APU
are slightly better than SUNSAL. However, SUNSAL provides
a smaller estimation variance leading to a more stable estima-
tor. Fig. 4 (right) shows that the execution time of the three
methods is an increasing function of the number of endmem-
bersm, as expected. However, there are significant differences
between the respective rates of increase. The execution times
of APU and SUDAP are cubic and quadratic functions ofm
whereas SUNSAL benefits from a milder increasing rate. More
precisely, SUDAP is faster than SUNSAL when the number
of endmembers is small, e.g., smaller than19 (this value may
change depending on the SNR value, the conditioning number
of E, the abundance statistics, etc.). Conversely, SUNSAL is
faster than SUDAP form ≥ 19. SUNSAL is more efficient
than APU for m ≥ 15 and SUDAP is always faster than
APU. The error bars confirm that SUNSAL offers more stable
results than SUDAP and APU. Therefore, it can be concluded
that the proposed SUDAP is more promising to unmix a
multi-band image containing a reasonable number of materials,
while SUNSAL is more efficient when considering a scenario
containing a lot of materials.

4) Timevs. Number of Pixels:In this test, the performance
of the algorithms has been evaluated for a varying number of
pixels n from 1002 to 4002 (the other parameters have been
fixed the same values as in Section III-B2). The endmember
signatures have been selected fromE10 (similar results have
been observed when usingE3 and E20) and the stopping
rule has been chosen as REt < −100dB. All results have
been averaged from30 Monte Carlo runs. The final REs
and the corresponding computational times are shown in Fig.
5. The computational time of the three algorithms increases
approximately linearly w.r.t. the number of image pixels and
SUDAP provides the faster solution, regardless the number of
pixels.
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Fig. 5. RE (left) and time (right)vs. number of pixels for SUNSAL, APU
and SUDAP (REt < −100dB).

5) Timevs. SNR: In this experiment, the SNR of the HS
image varies from0dB to 50dB while the other parameters
are the same as in Section III-B2. The stopping rule is the
one of Section III-B3. The results are displayed in Fig. 6 and
indicate that SUNSAL is more efficient than APU and SUDAP
(i.e., uses less time) for low SNR scenarios. More specifically,
to achieve REt < −100dB, SUNSAL provides more efficient
unmixing when the SNR is lower than5dB while SUDAP is
faster than SUNSAL when the SNR is higher than5dB.
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Fig. 6. RE (left) and time (right)vs. SNR for SUNSAL, APU and SUDAP
(REt < −100dB).

C. Real Data

This section compares the performance of the proposed
SUDAP algorithm with that of SUNSAL and APU using two
real datasets associated with two different applications,i.e.,
spectroscopy and hyperspectral imaging.

1) EELS Dataset: In this experiment, a spectral image
acquired by electron energy-loss spectroscopy (EELS) is con-
sidered. The analyzed dataset is a64 × 64 pixel spectrum-
image acquired innλ = 1340 energy channels over a region
composed of several nanocages in a boron-nitride nanotubes
(BNNT) sample [3]. A false color image of the EELS data
(with an arbitrary selection of three channels as RGB bands)
is displayed in Fig. 7 (left). Following [3], the number of end-
members has been set tom = 6. The endmember signatures
have been extracted from the dataset using VCA [15] and are
depicted in Fig. 7 (right). The abundance maps estimated by
the considered unmixing algorithms are shown in Fig. 8 for a
stopping rule defined as REt < 100dB.

There is no visual difference between the abundance maps
provided by SUNSAL, APU and the proposed SUDAP. Since
there is no available ground-truth for the abundances, the
objective criterionJt = ‖X−EÂt‖

2
F minimized by the algo-

rithms has been evaluated instead of NMSEt. The variations of
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Fig. 7. EELS dataset: HS image (left) and extracted endmember signatures
(right).

the objective function and the corresponding REs are displayed
in Fig. 9 as a function of the computational time.
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Fig. 9. Objective (left) and RE (right)vs. time for SUNSAL, APU and
SUDAP (EELS data).

Both figures show that the proposed SUDAP performs faster
than APU and SUNSAL as long as the stopping rule has been
fixed as REt < −60dB. For lower REt, SUDAP becomes
less efficient than SUNSAL. To explore the convergence more
explicitly, the number of spectral vectors that do not satisfy
the convergence criterion, i.e., for which RE> −100dB,
has been determined and is depicted in Fig. 10. It is clear
that most of the spectral vectors (around3600 out of 4096
pixels) converged quickly, e.g., in less than0.02 seconds. The
remaining measurements (around500 pixels) require longer
time to converge, which leads to the slow convergence as
observed in Fig. 9. The slow convergence of the projection
methods for these pixels may result from an inappropriate
observational model due to, e.g., endmember variability [36]
or nonlinearity effects [9]. On the contrary, SUNSAL is more
robust to these discrepancies and converges faster for these
pixels. This corresponds to the results shown in Fig. 9.

0 0.05 0.1 0.15
0

500

1000

1500

2000

2500

3000

3500

4000

Time(s)

N
o.

 o
f U

nc
on

ve
rg

ed
 P

ix
el

s

 

 

SUNSAL
APU
SUDAP

Fig. 10. Number of pixels that do not satisfy the stopping rule vs. time for
SUNSAL, APU and SUDAP (EELS data).
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Fig. 8. EELS dataset: abundance maps estimated by SUNSAL (top), APU (middle) and SUDAP (bottom).

2) Cuprite Dataset: This section investigates the perfor-
mance of the proposed SUDAP algorithm when unmixing
a real HS image. This image, which has received a lot
of interest in the remote sensing and geoscience literature,
was acquired over Cuprite field by the JPL/NASA airborne
visible/infrared imaging spectrometer (AVIRIS) [37]. Cuprite
scene is a mining area in southern Nevada composed of
several minerals and some vegetation, located approximately
200km northwest of Las Vegas. The image considered in this
experiment consists of250× 190 pixels ofnλ = 189 spectral
bands obtained after removing the water vapor absorption
bands. A composite color image of the scene of interest is
shown in Fig. 11 (left). As in Section III-C2, the endmember
matrix E has been learnt from the HS data using VCA.
According to [15], the number of endmembers has been set to
m = 14. The estimated endmember signatures are displayed
in Fig. 11 (right) ant the first five corresponding abundance
maps recovered by SUNSAL, APU and SUDAP are shown in
Fig. 12. Visually, all three methods provide similar abundance
maps4.

From Fig. 11 (right), the signatures appear to be highly
correlated, which makes the unmixing quite challenging. This
can be confirmed by computing the smallest angle between any
couple of endmembers, which is equal toα = 2.46 (in degree).
This makes the projection-based methods, including SUDAP
and APU, less efficient since alternating projections are widely
known for their slower convergence when the convex sets
exhibit small angles, which is consistent with the convergence
analysis in Section II-D. Fig. 13, which depicts the objective
function and the RE w.r.t. the computational times corroborates

4Similar results were also observed for abundance maps of theother
endmembers. They are not shown here for brevity and are available in a
separate technical report [38].
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Fig. 11. Cuprite dataset: HS image (left) and extracted endmember signatures
(right).

this point. Indeed, SUDAP performs faster than SUNSAL and
APU if the algorithms are stopped before RE< −30dB. For
lower REt, SUNSAL surpasses SUDAP.
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Fig. 13. Objective function (left) and RE (right)vs. time for SUNSAL, APU
and SUDAP (Cuprite data).

IV. CONCLUSION

This paper proposed a fast unmixing method based on
an alternating projection strategy. Formulating the spectral
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Fig. 12. Cuprite dataset: abundance maps estimated by SUNSAL (top), APU (middle) and SUDAP (bottom).

unmixing problem as a projection onto the intersection of
convex sets allowed Dykstra’s algorithm to be used to compute
the solution of this unmixing problem. The projection was
implemented intrinsically in a subspace, making the proposed
algorithm computationally efficient. In particular, the proposed
unmixing algorithm showed similar performance comparing to
state-of-the-art methods, with significantly reduced execution
time, especially when the number of endmembers is small or
moderate, which is often the case when analyzing conventional
multi-band images. Future work includes the generalization of
the proposed algorithm to cases where the endmember matrix
is rank deficient or ill-conditioned.

APPENDIX

SOLVING (13) WITH KKT CONDITIONS

Following the KKT conditions, the problem (13) can be
reformulated as findingu∗ satisfying the following conditions

u∗ − z+ µb− λdi = 0

dT
i u

∗ ≥ 0
bTu∗ = 1

λ ≥ 0
µ ≥ 0

λdT
i u

∗ = 0.

(21)

Direct computations lead to

u∗ = z− z̃+∆z (22)

where

z̃ = c
(
bT z− 1

)

c = b/ ‖b‖22
∆z = τisi
τi = max{0,−dT

i (z− z̃) /‖Pdi‖2}
si = Pdi/‖Pdi‖2
P = Im − bbT / ‖b‖22 .

(23)
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Computing the projection ofzj for j = 1, · · · , n can be
conducted in parallel, leading to the following matrix update
rule

U∗
i = ΠS∩Ni

(Z)

= Z− Z̃+ siτ
T
i

= ΠS(Z) + siτ
T
i

(24)

where

Z̃ = c
(
bTZ− 1T

n

)

τ
T
i = max{0,−dT

i

(
Z− Z̃

)
/‖Pdi‖2}.

As a conclusion, the updating rules (24) and (18) only differ
by the way the projectionΠS(Z) ontoS has been computed.
However, it is easy to show thatΠS(Z) = Z− Z̃ used in (24)
is fully equivalent toΠS(Z) = c1T

n + P(Z − c1T
n ) required

in (18).

Remark. It is worthy to provide an alternative geometric
interpretation of the KKT-based solution(22). First, z − z̃

is the projection ofz onto the affine setS. Second, if the
projection is inside the setNi, which meansdT

i (z− z̃) ≥ 0,
then the projection ofz onto the intersectionS ∩ Ni is
z− z̃. If the projection is outside of the setNi, implying that
dT
i (z− z̃) < 0, a move∆z inside the affine setS should

be added toz− z̃ to reach the setNi. This move∆z should
ensure three constraints: 1)∆z keeps the pointz − z̃ + ∆z

inside the affine setS, 2) z− z̃+∆z is on the boundary of the
setNi, and 3) the Euclidean norm of∆z is minimal. The first
constraint, which can be formulated asbT∆z = 0, is ensured
by imposing a move of the form∆z = Pw whereP = VVT

is the projector onto the subspaceS0 orthogonal tob. The
second constraint is fulfilled whendT

i (z− z̃+∆z) = 0,
leading todT

i Pw = −δi, whereδi = dT
i (z− z̃). Thus, due

to the third constraint,w can be defined as

w = argmin
v

‖Pv‖22 s.t. dT
i Pw = −δi. (25)

Using the fact thatP is an idempotent matrix, i.e.,P2 = P,
the constrained optimization problem can be solved analyti-
cally with the method of Lagrange multipliers, leading to

w = −δi
(
dT
i Pdi

)−1
di (26)

and ∆z = Pw = −δi
(
dT
i Pdi

)−1
Pdi. This final result is

consistent with the move defined in(22) and (23) by setting
τi = max{0,− δi

‖Pdi‖2

} and si = Pdi/‖Pdi‖2. Recall that

‖Pdi‖
2
2 =

(
dT
i Pdi

)
sincePTP = P.

ACKNOWLEDGMENTS

The authors would like to thank Rob Heylen,Émilie
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