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Abstract—This paper presents a fast spectral unmixing al- to the populadinear mixing model(LMM) [10]-[12]. More

gorithm ba;ed on Dykstra’s alternating projection. The pro- precisely, each COIummj e R™ of the measurement matrix
posed algorithm formulates the fully constrained least sqares y _ 21 x,,] can be regarded as a noisy linear combina-
- yrrran

optimization problem associated with the spectral unmixig . . . . .
task as an unconstrained regression problem followed by a tion of the spectral signatures leading to the following nmat

projection onto the intersection of several closed convexets. formulation

This projection is achieved by iteratively projecting onto each X=EA+N (1)

of the convex sets individually, following Dyktra’'s scheme The

sequence thus obtained is guaranteed to converge to the stiig Where

projection. Thanks to the preliminary matrix decomposition and « E € R™*™ js the endmember matrix whose columns
variable substitution, the projection is implemented intrinsically he si f the, ial

in a subspace, whose dimension is very often much lower than €1, 7e;n a}re the signatures of t A materla S,

the number of bands. A benefit of this strategy is that the e+ A € R™*" is the abundance matrix whogéh column
order of the computational complexity for each projection is a; € R™ contains the fractional abundances of tik
decrggsgd fr(qu quadrati(t: t(l) linear time. Numerical e.)ép%rrents spectral vectorr;,

considering diverse spectral unmixing scenarios providewdence naXn i . ; ;

that the proposed algorithm competes with the state-of-thaurt, - NeR Is the additive noise matrix.

namely when the number of endmembers is relatively small, a  As the mixing coefficient; ; represents the proportion (or

circumstance often observed in real hyperspectral applidigons.  probability of occurrence) of the théh endmember in the
Index Terms—spectral unmixing, fully constrained least jth measurement [10], [11], the abundance vectors satisfy

squares, projection onto convex sets, Dykstra’s algorithm the followingabundance non-negativity constraiNC) and
abundance sum-to-one constra{AtSC)

[. INTRODUCTION a; >0 and 151,1]. =1,Vj=1,---,n )

SPECTRAI.‘ “f‘mixmg (SU) aims at decomposing a S%here> means element-wise greater or equal afg <
Ollf nt_mult|;/ar|at|e mezisurementtx e:E[ail’ - ] into R™>1 represents a vector with all ones. Accounting for all

a collection ofm elementary signatureB = fe1, -, eml, 4o image pixels, the constraints (2) can be rewritten irrimat
usually referred to asndmembersand estimating the relative form
proportionsA = [a4, ..., a,] of these signatures, call@tun-

o A>0 and 1TA =17, 3
dancesSU has been advocated as a relevant multivariate anal- - m " (3)

ysis technique in various applicative areas, includinga®m  Unsupervised linear SU boils down to estimating the end-
sensing [1], planetology [2], microscopy [3], spectroscopmember matrixE and abundance matriA from the mea-
[4] and gene expression analysis [5]. In particular, it hasirementsX following the LMM (1). It can be regarded as
demonstrated a great interest when analyzing multi-bagd, (ea special instance of (constrained) blind source separatio
hyperspectral) images, for instance for pixel classifraf6], where the endmembers are the sources [13]. There already
material quantification [7] and subpixel detection [8]. exists a lot of algorithms for solving SU (the interesteddera

In this context, several models have been proposed in tiseinvited to consult [10]-[12] for comprehensive reviews
literature to properly describe the physical process ugderon the SU problem and existing unmixing methods). Most
ing the observed measurements. Under some generally mjfdthe unmixing techniques tackle the SU problem into two
assumptions [9], these measurements are supposed to residtessive steps. First, the endmember signatures at#ieten
from linear combinations of the elementary spectra, adogrd thanks to a prior knowledge regarding the scene of inteoest,

bart of thi < has b ed by the Chi Sehiegsiuncil extracted from the data directly using dedicated algorghm
the ag/pc;ne:ﬁawzrim Sfojei%r;%\;ﬁﬁ%r-sesogoog, o AN 11 ABX 0040, SUCh as N-FINDR [14], vertex component analysis (VCA)
CIMI Project, in particular during the ANR-11-IDEX-0002(rogram within  [15], and successive volume maximization (SVMAX) [16].
the thematic trimester on image processing, and the ParsiegScience and Then, in a second step, call@wersionor supervisedsU, the
:,‘:ecoh/”l‘ﬂ‘;g)’zz‘l’gf‘da“o” under Projects UID/EEA/50008/2848 PTDC/EEL 51y dance matrix is estimated given the previously identi-
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proaches. Heinet al. [17] developed a fully constrained leastit is worthy to interpret this optimization problem from a
squares (FCLS) algorithm by generalizing the Lawson-Hansprobabilistic point of view. The quadratic objective fuioct
non-negativity constrained least squares (NCLS) algarithcan be easily related to the negative log-likelihood fuoreti
[18]. Dobigeonet al. formulated the unmixing problem into associated with observatioXs corrupted by an additive white

a Bayesian framework and proposed to draw samples fr@daussian noise. Moreover, the ANC and ASC constraints can
the posterior distribution using a Markov chain Monte Carlbe regarded as a uniform distribution faj (Vj = 1,--- ,n)
algorithm [19]. This simulation-based method considers tlon the feasible regiont
ANC and ASC both strictly while the computational complex-

ity is significant when compared with other optimizatiorsed pla;) = {
methods. Bioucas-Diast al. developed a sparse unmixing

algorithm by variable splitting and augmented Lagrangiamhere A = {ala >0,17a =1} andc = 1/vol(A). Thus,
(SUNSAL) and its constrained version (C-SUnSAL), whiciminimizing (4) can be interpreted as maximizing the posteri
gener.alizes .th.e unmixing problem by introducing spectrg|siripution of A with the prior p(A) = ﬁ pla;), where
sparsity explicitly [20]. More recently, Chouzenoekal. [21] j=1

proposed a primal-dual interior-point optimization aigom We have assumed the abundance veciofsare a priori
a”owing for a constrained least squares (LS) estimation dpdependent. In this SeCtion, we will demonstrate that the
proach and an algorithmic structure suitable for a parattel Optimization problem (4) can be decomposed into an uncon-
plementation on modern intensive computing devices suchined optimization, more specifically an unconstraieest
graphics processing units (GPU). Heylenal. [22] proposed square (LS) problem with an explicit closed form solution,
a new algorithm based on the Dykstra’'s algorithm [23] foiellowed by a projection step that can be efficiently achteve
projections onto convex sets (POCS), with runtimes that apéth the Dykstra’s alternating projection algorithm.
competitive compared to several other techniques.

In this paper, we follow a Dykstra’s strategy for POCS t%
solve the unmixing problem. Using an appropriate decompo-
sition of the endmember matrix and a variable substitution, Under the assumption th& has full column rank it is
the unmixing problem is formulated as a projection onto thetraightforward to show that the problem (4) is equivalent t
intersection ofm + 1 convex sets (determined by ASC and min Y — DA
ANC) in a subspace, whose dimension is much lower than the A F
number of bands. The intersection/of+ 1 convex sets is split st. A>0 and 1LA =17
into the intersection ofn convex set pairs, which guarantees
that the abundances always live in the hyperplane goveryled"\ﬁh
ASC to accelerate the convergence of iterative projectibns 2" A e \ToT
each projection, the subspace transformation yields inea Y=([D ) EX @)

der (of the number of endmembers) computational operationsgice we usually haven < n,, then the formulation
which decreases the complexity greatly when compared w'(@) opens the door to faster solvers. Given tBEE is
Heylen's method [22]. positive definite, the equatioB” E = D”D has non-singular
The paper is organized as follows. In Section Il, we formusg|utions. In this paper, we use the Cholesky decomposition
late SU as a projection problem onto the intersection of €anvfing g solution of that equation. Note that we have also used

sets defined in a subspace with reduced dimensionality. Wgutions based on the eigendecompositiorESTE, leading
present the proposed strategy for splitting the intersBadf 14 very similar results.

m+ 1 convex sets into the intersection @f convex set pairs. DefiningU 2 DA andb” 2 17D, the problem (6) can
Then, the Dykstra’s alternating projection is used to sth® e transformed as "

projection problem, where each individual projection can b . 5
solved analytically. The convergence and complexity ssialy e IY = Ul

of the resulting algorithm is also studied. Section Il apgl st D-'U>0 and b’U =17,
the proposed algorithm to synthetic and real multi-bané.dat - "

Conclusions and future work are summarized in Section [v. Obviously, the optimization (8) with respect to (w.r.Lj
can be implemented in parallel for each spectral veatgr

whereU = [uy,--- ,u,] andu, is the jth column ofU. In

) ) another words, (8) can be split intoindependent problems
In this paper, we address the problem of supervised SU,

c ifa;eA
0 elsewhere

®)

Reformulating Unmixing as a Projection Problem

(6)

ereD is anym x m square matrix such th&”E = DD

(8)

II. PROPOSEDFAST UNMIXING ALGORITHM

which consists of solving the following optimization prebi m&n ly; —ull3 ©)
min || X — EA|/% st D'u>0 and b'u=1
A 4 . . ,
subjectto (s.t) A>0 and 1L A =17 @) wherey; is the jth column of Y (Vj =1,--- ,n).

. ) ) ) Recall now that the Euclidean projection of a given vector
where || - || is the Frobenius norm. As explained in the

'nf[md_ucnon! this problem has b_e_en considered in many apap;s assumption is satisfied once the endmember spectrataigs are
plications where spectral unmixing plays a relevant rolénearly independent.



v onto a closed and convex sétis defined as [24] rewritten as the intersection of sets

Me(w) £ argmin (v~ uli +c(w) (10 SO = (VSN
=1

wherec(u) denotes the indicator function
by spliting A/ into N/ = A1 N --- N N,,, where \V; =

Le(u) = 0 ifue C (11) {ueR™ :dfu>0} andd! represent théth row of D,
oo otherwise. . _1 T S
ie, D' = [dy,---,d,] . Even though projecting onto
Therefore, the solutiont; of (9) is the projection this m-intersection is difficult, projecting onto each convex
of y; onto the intersection of convex setd/ = setSNN; (i =1,...,m) is easier, as it will be shown in

{u eR™ : D lu> 0} (associated with the initial ANC) and paragraph II-C. Based on this remark, we propose to perform
S = {u eR™ :bTu= 1} (associated with the initial ASC) the projection ontaS N N using the Dykstra’s alternating
as follows projection algorithm, which was first proposed in [23], [28]

4; =argminlly; — ull% + tvns(u) and has been developed to more general optimization preblem
! RTINS ! (12) [29], [30]. More specifically, this projection is split inta it-
= yns(y;) erative projections onto each convex&et\; (i = 1,...,m),
where, is the jth column of matrixU. following the Dykstra’s procedure described in Algorithm 2

Remark. It is interesting to note thaly deflned byg ) can
also be written a&y = DA whereA ;g £ ETE

is the LS estimator associated with the unconstralned coun-/ Compute b
terpart of (4). Therefore)Y, U and ' N S correspond taX, L b7 « 17D
A and A, respectively, under the linear mapping induced by /]

Algorithm 2: Dykstra’s Projection ofY onto SN A
Input: Y, D, K

D In|t|aI|zati0n
‘ 2 SetUY) « Y, QY =---=QY) «o;
To summarize, supervised SU can be conducted following// Main iterations
Algorithm 1 by first transforming the observation matrix asg for k =1,--- , K do
Y = (DY)TETX, and then looking for the projectiofy /'l Projection onto SNAN; (Al go. 3)
of Y onto N'N S. Finally, the abundance matrix is easily, U( ) e Tsop, (UED 4 QE—Yy,
recovered through the inverse linear mappihg= D' U. 5 Q - U(k 1) +Q (k=1) _ ).
The projection ontoV' N S is detailed in the next paragraph. fO;nZ —9 ... _mdo b
/1 Proj ection onto SNAN; (A go. 3)
Algorithm 1: Fast Unmixing Algorithm 7 UM Tsap, (UM, + QETY):;
Input: X (measurementsE (endmember matrix), S g QM « u™ 4 QY UZ(.k),
/] Calculate the subspace transformation D 9 end
fromthe Chol esky deconposition 10 end
E'E=D'D 1 U« UgnK);

1 D + Chol(ETE);
/] Conpute Y
2 Y« D TETX;

output: U « Isqp (Y)

/1 Project Y onto NNS (A go. 2) The motivations for projecting ont& N N; are two-fold.
3 U« Iyns(Y); First, this projection guarantees that the vectarsalways
/| Calculate the abundance satisfy the sum-to-one constraibf @; = 1, which implies

4 A — DT that these vectors never jump out from the hyperplahe
' and thus accelerates the convergence significantly. Seasnd
illustrated later, incorporating the constraibfu = 1 does
not increase the projection computational complexity, oluhi
means that projecting ont§ N ; is as easy as projecting
onto \; (for i = 1,--- ,m). The projection ontaS N N; is

B. Dykstra’s Projection ontoV' NS described in the next paragraph.

Output: A (abundance matrix)

While the matrixY can be computed easily and efficiently
from (7), its projection ontoV' NS following (12) is not easy C. Projection ontaS N A;
to perform. The difficulty mainly comes from the spectral The main step of the Dykstra’s alternating procedure (Al-
correlation induced by the linear mappidg in the non- gorithm 2) consists of computing the projectitif of a given
negativity constraints defining/’, which prevents any use of matrix Z onto the setS N \;
fast algorithms similar to those introduced in [25]-[27Hde w _
cated to the projection onto the canonical simplex. However :
as this set can be regardedasinequalities,S N N can be = [Msnw; (z1), - s (20)].



u=c+ Va in (13), we obtain the equivalent optimization
min [VT(z —¢) — a|3 st. (VId))"a > —(dfc) (16)
(a4
which is a projection onto a half space whose solution is [24]
v7Td;
* VT o 171
M « (z—c)+ VTd; |2
where
al’'v d’c }
7, =max< 0, — VT(z -t
{ viap YO vrar,
= max{0, —s; z + f;}

with s; = Pd;/||Pd;|2, fi = —d7c/||Pd;|2, and we have
_1) used the facts thdtvV'x||s = |Px|]z andVTc =0
Recalling thatu = ¢ + Va, we obtain

= T
Fig. 1. lllustration of the projection of onto the setS N Ni: the setS is z=c+VV (z—c)+Ts;
defined by the vectoe € S and by the vectob orthogonal to the subspace =1IlIg (z) + ;8.
S — {c}; the vectoru € S may be written as1 = Va + ¢ whereV spans
the subspaceS — {c} and a € R(™~1); the vectorz is the orthogonal The interpretation of (17) is clear: the orthogonal prdmtof

e e o e rsod i 912, 9101 Onl0. 11 I Oblained by first compuing = [15(s), .

the projectionz onto the hyperplané&, and then computing

z = llsnn,(Z), i.e. the projectionz onto the intersection

S N N;. Given thatS N N; C 8, then (17) is, essentially,
Let z € R™ denote a generic column &. The computation a consequence of a well know result: given a convex set
of the projectionllsn;, (z) can be achieved by solving thecontained in some subspace, then the orthogonal projection
following convex constrained optimization problem: of any point in the convex set can be accomplished by first

projecting orthogonally on that subspace, and then priogct

(13) the result on the convex set [31, Ch. 5.14].
st. dfu>0 and bTu=1. Finally, computingU; can be conducted in parallel for
each column ofZ leading to the following matrix update rule
éummarized in Algorithm 3):

(17)

min||zfu|\§
u

To solve the optimization (13), we start by removing th
constraintb”’u = 1 by an appropriate change of variables. U =15(Z) + st (18)
Having in mind that the sef = {u € R™ : blu =1} is
a hyperplane that contains the vectoe b/||b||Z, then that With 77 € R'*" given by
constraint is equivalent ta = c+ Va, wherea € R™~! and 77 = max{0, ;17 — s7Z}
the columns ofV € R™*(m~1) gpan the subspace— {c} = ’ ' ‘

{u € R™ : bTu = 0}, of dimension(m — 1). The matrix Wwhere

V is chosen such tha¥”V = 1,,_4, i.e, the columns of d’c

V are orthonormal. Fig. 1 schematizes the mentioned entities fi= _m (19)
jointly with z, the orthogonal projection efontoS, andz, the

orthogonal projection o ontoS; NA';. The former projection and the operatamax has to be understood in the component-

may be written as wise sense . .
y Note that using the Karush-Kuhn-Tucker (KKT) conditions
z =1ls(z) to solve the problem (13) can also lead to this exact solution
=c+P(z—c) (14) as described in the Appendix.

whereP = VVT =1,, — bb” /||b||2 denotes the orthogonalD. Convergence Analysis

projection matrix ontaS — {c}. With these objects in place, The convergence of the Dykstra’s projection was first proved
and givenz € R™ andu € S, we simplify the cost function jn [28], where it was claimed that the sequences generated
|z —ul|3 by introducing the projection of onto S and by using Dykstra’s algorithm are guaranteed to converge to the
using the Pythagorean theorem as follows: projection of the original point onto the intersection okth
convex sets. Its convergence rate was explored later [32],
[33]. We now recall the Deutsch-Hundal theorem providing
the convergence rate of the projection onto the intersectfo
=|z—z|5+|V'(z—c)—al;  (15) m closed half-spaces.

|1z — |3 = llz — 2|3 + |12 - u]3

=lz 2|3 + [z ¢) - Vaf3

where the right hand term in (15) derives directly fronTheorem 1 (Deutsch-Hundal, [32]; Theorem 3.8Assuming
(14) and from the fact thaW”V = I,,_;. By introducing thatX, is thekth projected result in Dykstra’s algorithm and



Algorithm 3: ProjectingZ onto S N \; implemented in the signal subspace without using any par-

Input: Z, b, d; allelization. These unmixing algorithms have been congpare
/1 calculate Pd:;, s; c and f; using the figures of merit described in Section IlI-A. SeVera
1 ¢« b/|bl2; experiments have been conducted using synthetic datasets
2 Pd; « d; — cb”d;; and are presented in Section IlI-B. Two real hyperspectral
3 s; — Pd,;/|Pdy|s ; (HS).datase_ts assgmated with two different applicatiores a
4 fi « —dTc/|Pdi> ; can|dgred in Section I11-C. The MATLAB.codes and all the
/] calculate +7 simulation results are available on the first author's home-
5 71 « max{0, f;11 — sTZ}; pagé.
/'l Project Z onto S
6 Ils(Z) <+ c1l + P(Z — c17); A. Performance Measures
/1 Conpute the final solution U? In what follows, A; denotes the estimation of obtained
7 Up  1ls(Z) + 7] at timet (in seconds) for a given algorithm. Provided that the
Output: U; endmember matrid has full column rank, the solution of

(4) is unique and all the algorithms are expected to converge
to this unique solution, denoted a&* £ A, (ignoring
X Is the converged point, there exist constaits’ ¢ < 1 numerical errors). In this work, one of the state-of-the-ar
and p > 0 such that methods is run with a large number of iterations=¢ 5000 in
9 & our experiments) to guarantee that the optimal pdirithas
Xk = Xoollio < pe (20 peen rzached. )9 P P
for all k. 1) Convergence Assessmerfirst, different solvers de-

Theorem 1 demonstrates that Dvkstra’s proiection h signed to compute the solution of (4) have been compared
_ 'heore emonstrates that Dykstras projection has g yhe time they require to achieve a given accuracy.sThu
linear convergence rate [34]. The convergence speed depegI

: _ these algorithms have been run on the same platform and
on the constant, which depends on the number of constram%e have evaluated the relative error (RE) betwaarand A *
m and the ‘angle betvveer_1 .tWO half-spaces.[32]. To the be&& a function of the computational time defined as
of our knowledge, the explicit form af only exists form = 2

half-spaces and its determination for > 2 is still an open fot — AY|%
roblem [35]. RE = —az
P [35] A~
) ) 2) Quality Assessmenflo analyze the quality of the un-
E. Complexity Analysis mixing results, we have also considered the normalized mean
To summarize, the projection on®N A can be obtained square error (NMSE)
by iteratively projecting onto the: setsSNN; (i = 1,...,m) A A2
using a Dykstra’s projection scheme as described in Algorit NMSE; = M
2. The output of this algorithm converges to the projectibn o Al

the initial pointY onto S N V. It is interesting to note that The smaller NMSE the better the quality of the unmixing.

the quantities denoted d$s(Z) in Algorithm 3 needs to be Note that NMSE, = % is a characteristic of the

calculated only once since the projectionvill be itself Z  gpjective criterion (4) and not of the algorithm.

from the second projectiol s~ s, . This results from the fact

that the projection never jumps out from the hyperpl&he . .
Moreover, the most computationally expensive part of tf%‘ Unmixing Synthetic Data

proposed unmixing algorithm (Algorithm 1) is the iterative The synthetic data is generated using endmember spectra

procedure to project ontS N A, as described in Algorithm selected from the United States Geological Survey (USGS)

2. For each iteration, the heaviest step is the projectidn orfligital spectral library. These reflectance spectra consists

the intersectionS N \; summarized in Algorithm 3. With of L = 224 spectral bands fron883nm to 2508nm. To

the proposed approach, this projection only requires vectditigate the impact of the intra-endmember correlationeeh

products and sums, with a cost@fnm) operations, contrary different subsetsEs, Eio and E5, have been built from

to the®(nm?) computational cost of [22]. Thus, each iteratiothis USGS library. More specificallyl, is an endmember
of Algorithm 2 has a complexity of orde®(nm?). matrix in which the angle between any two different columns

(endmember signatures) is larger thafin degree). Thus, the
1. EXPERIMENTS USINGSYNTHETIC AND REAL DATA smallera, the more similar the endmembers and the higher the

. . L ... conditioning number of. For example E5 contains similar
This section compares the proposed unmixing algorlth(ranndmembers with very small variations (including scal)ngfs
with several state-of-the-art unmixing algorithms, ieGLS y 9

[17), SUNSAL [20], IPLS [21] and APU [22], Al algoritims | S8R, T Bt TG e oo e e e
have been implemented using MATLAB R2014A on a com- ’ '
puter with Intel(R) Core(TM) i7-2600 CPU@3.40GHz and 2ptp:/iwei.perso.enseeiht.fr/

8GB RAM. To conduct a fair comparison, they have beens3http:/speclab.cr.usgs.govispectral.ib06/



of several endmembers frol; andE,q have been depicted Section 111-B2 (SNR= 30dB andn = 100?). The endmember
in Fig. 2. The abundances have been generated uniformlysignatures have been selected frély (similar results have
the simplexA defined by the ANC and ASC constraints.  been observed when usirlgs and Es). All the algorithms
Unless indicated, the performance of these algorithms Ha@ve been stopped onck, reaches the same convergence
been evaluated on a synthetic image of si@2é x 100 whose criterion RE < —100dB. The proposed SUDAP has been
signal to noise ratio (SNR) has been fixed to SNB#B and compared with the two most competitive algorithms SUNSAL
the number of considered endmembersnis= 5. and APU. The final REs and the corresponding computational
times versusn have been reported in Fig. 4, including error
bars to monitor the stability of the algorithms (these ressul
have been computed frof0 Monte Carlo runs).

Reflectance
Reflectance

—e— SUNSAL
—s—APU
—6—SUDAP

Time(s)

20 40 60 8 100 120 140 160 180 200 220 20 4 60 8 100 120 140 160 180 200 220
Bands Bands

Fig. 2. Five endmember signatures randomly selected fEam(left) and
Eo (right).

6 18 20 22

8 10 12 14 1 18 20 8 10 12 14 16
No. of Endmembers No. of Endmembers

1) _Initializaﬁon: The_ propos_e(_d_ S_UDAP’ APU and FCLSFig. 4. RE (left) and time (rightys. number of endmembers for SUNSAL,
algorithms do not require any initialization contrary to I$U APU and SUDAP (RE < —100dB).

SAL and IPLS. As suggested by the authors of these two
methods, SUNSAL has been initialized with the unconstiine Fig. 4 (left) shows that all the algorithms have converged to
LS estimator of the abundances whereas IPLS has beepoint satisfying RE< —100dB and that SUDAP and APU
initialized with the zero matrix. Note that our simulatidmsve are slightly better than SUNSAL. However, SUNSAL provides
shown that both SUNSAL and IPLS are not sensitive to theaesmaller estimation variance leading to a more stable astim
initializations. tor. Fig. 4 (right) shows that the execution time of the three
2) Performancevs. Time: The NMSE and RE for these methods is an increasing function of the number of endmem-
five different algorithms are displayed in Fig. 3 as a funttiobersm, as expected. However, there are significant differences
of the execution time. These results have been obtained listween the respective rates of increase. The executi@s tim
averaging the outputs 030 Monte Carlo runs. More pre- of APU and SUDAP are cubic and quadratic functions»of
cisely, 10 randomly selected matrices for each Bgt E;g whereas SUNSAL benefits from a milder increasing rate. More
and Eo are used to consider the different intra-endmembprecisely, SUDAP is faster than SUNSAL when the number
correlations. All the algorithms converge to the same smiut of endmembers is small, e.g., smaller th&n(this value may
as expected. However, as demonstrated in these two figu@®gnge depending on the SNR value, the conditioning number
SUNSAL, APU and the proposed SUDAP are much fastef E, the abundance statistics, etc.). Conversely, SUNSAL is
than FCLS and IPLS. From the zoomed version in Fig. 3, wiaster than SUDAP forn > 19. SUNSAL is more efficient
can observe that in the first iterations SUDAP convergesifasthan APU form > 15 and SUDAP is always faster than
than APU and SUNSAL. More specifically, for instance, if thé\PU. The error bars confirm that SUNSAL offers more stable
respective algorithms are stopped once RE-80dB (around results than SUDAP and APU. Therefore, it can be concluded
t = 50ms), SUDAP performs faster than SUNSAL and APUhat the proposed SUDAP is more promising to unmix a
and with a lower NMSE multi-band image containing a reasonable number of méderia
while SUNSAL is more efficient when considering a scenario

containing a lot of materials.

4) Timevs. Number of Pixelsin this test, the performance
of the algorithms has been evaluated for a varying number of
pixels n from 1002 to 400% (the other parameters have been
fixed the same values as in Section 111-B2). The endmember
signatures have been selected friéiyy, (similar results have
been observed when usings; and E5;) and the stopping
rule has been chosen as RE —100dB. All results have
been averaged from0 Monte Carlo runs. The final REs
Fig. 3. NMSE (left) and RE (rightys. time (zoomed version in top right). and the corresponding computational times are shown in Fig.

5. The computational time of the three algorithms increases

3) Timevs. the Number of Endmembersn this test, the approximately linearly w.r.t. the number of image pixelglan
number of endmembers: varies from3 to 23 while the SUDAP provides the faster solution, regardless the number o
other parameters have been fixed to the same values apikels.

NMSE(dB)
RE(dB)

B T g g o T B B
Time(s) Time(s)
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Fig. 5. RE (left) and time (rightys. number of pixels for SUNSAL, APU - T T T T T
and SUDAP (RE < —100dB). Bands
Fig. 7. EELS dataset: HS image (left) and extracted endmemsigeatures
right).
5) Timevs. SNR: In this experiment, the SNR of the HS( o
image varies fronDdB to 50dB while the other parameters
are the same as in Section I1I-B2. The stopping rule is tfiee objective function and the corresponding REs are displa
one of Section I11-B3. The results are displayed in Fig. 6 aril Fig. 9 as a function of the computational time.
indicate that SUNSAL is more efficient than APU and SUDAP
(i.e., uses less time) for low SNR scenarios. More spediyical ’ BN
to achieve RE< —100dB, SUNSAL provides more efficient
unmixing when the SNR is lower thasdB while SUDAP is
faster than SUNSAL when the SNR is higher thaiB.
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Fig. 9. Objective (left) and RE (rightys. time for SUNSAL, APU and
SUDAP (EELS data).

- \*\*\f\._,_ Both figures show that the proposed SUDAP performs faster
SR Pkt T T T T P ® ° * than APU and SUNSAL as long as the stopping rule has been
i _ , fixed as RE < —60dB. For lower RE, SUDAP becomes

Fig. 6. RE (left) and time (rightys. SNR for SUNSAL, APU and SUDAP |asg efficient than SUNSAL. To explore the convergence more

(RE; < —100dB). o : .

explicitly, the number of spectral vectors that do not $atis
the convergence criterion, i.e., for which RE —100dB,

has been determined and is depicted in Fig. 10. It is clear

C. Real Data N i I ¢
This section compares the performance of the propostetilt most of the spectral vectors (arousihi out of 4096

SUDAP algorithm with that of SUNSAL and APU using twopixels_,) .converged quickly, €.g., in Iess.th@u@2 secgnds. The
real datasets associated with two different applicatidses, remaining measurements (aroufdh pixels) require longer

. : time to converge, which leads to the slow convergence as

spectroscopy and hyperspectral imaging. L o
4 ' , . observed in Fig. 9. The slow convergence of the projection
1) EELS Dataset:In this experiment, a spectral image . . .
. .~ methods for these pixels may result from an inappropriate
acquired by electron energy-loss spectroscopy (EELS)ns co

: . . _ Observational model due to, e.g., endmember variabili6] [3
sidered. The analyzed dataset isi&x G4 pixel spectrum or nonlinearity effects [9]. On the contrary, SUNSAL is more

image acquired im) = 1340 energy channels over a region . :
g q 2 9y - 9 Bobust to these discrepancies and converges faster foe thes
composed of several nanocages in a boron-nitride nanotubes

(BNNT) sample [3]. A false color image of the EELS datz?'xels' This corresponds to the results shown in Fig. 9.
(with an arbitrary selection of three channels as RGB bands)
is displayed in Fig. 7 (left). Following [3], the number ofdn
members has been set#te = 6. The endmember signatures
have been extracted from the dataset using VCA [15] and are
depicted in Fig. 7 (right). The abundance maps estimated by
the considered unmixing algorithms are shown in Fig. 8 for a
stopping rule defined as RE: 100dB.

There is no visual difference between the abundance maps | -
provided by SUNSAL, APU and the proposed SUDAP. Since Timets)
th(:j're _'S no_ a\_/allable ground:truth f‘?r_ the abundances, thﬁ 10. Number of pixels that do not satisfy the stopping ns. time for
objective criterion7; = || X —EA;||% minimized by the algo- SUNSAL, APU and SUDAP (EELS data).
rithms has been evaluated instead of NMSEhe variations of

RE(dB)

§

§

No. of Unconverged Pixels
g g

H




Fig. 8. EELS dataset: abundance maps estimated by SUNSA), @*U (middle) and SUDAP (bottom).

2) Cuprite Dataset: This section investigates the perfor
mance of the proposed SUDAP algorithm when unmixin
a real HS image. This image, which has received a |
of interest in the remote sensing and geoscience literatu )
was acquired over Cuprite field by the JPL/NASA airborniiiies i
visible/infrared imaging spectrometer (AVIRIS) [37]. Qitp |
scene is a mining area in southern Nevada composed §
several minerals and some vegetation, located approXynats
200km northwest of Las Vegas. The image considered in t
experiment consists &f50 x 190 pixels of n) = 189 spectral
bands obtained after removing the water vapor absorpti
bands. A composite color image of the scene of interestHfg. 11. Cuprite dataset: HS image (left) and extracted @mlber signatures
shown in Fig. 11 (left). As in Section 11I-C2, the endmembefight).
matrix E has been learnt from the HS data using VCA.

According to [15], the number of endmembers has been setigs point. Indeed, SUDAP performs faster than SUNSAL and
m = 14. The estimated endmember signatures are displaygduy if the algorithms are stopped before RE-30dB. For

in Fig. 11 (right) ant the first five corresponding abundanggwer RE,, SUNSAL surpasses SUDAP.
maps recovered by SUNSAL, APU and SUDAP are shown in

Fig. 12. Visually, all three methods provide similar abumcka
map$.

From Fig. 11 (right), the signatures appear to be high
correlated, which makes the unmixing quite challengingsThg*”
can be confirmed by computing the smallest angle between 5 ..-
couple of endmembers, which is equahte= 2.46 (in degree).

This makes the projection-based methods, including SUD/
and APU, less efficient since alternating projections adelyi
known for their slower convergence when the convex sets
exhibit small angles, which is consistent with the convamge Fig. 13. Objective function (left) and RE (right}s. time for SUNSAL, APU
analysis in Section 1I-D. Fig. 13, which depicts the objeeti @nd SUDAP (Cuprite data).

function and the RE w.r.t. the computational times corrabes

0 20 40 60 80 100 120 140 160 180
Bands

RE(dB)

1001

4 5 6

3 B
Time(s) Time(s)

IV. CONCLUSION
4Similar results were also observed for abundance maps ofother Thi d f .. hod b d
endmembers. They are not shown here for brevity and areablailin a IS paper proposed a fast unmixing metho ased on

separate technical report [38]. an alternating projection strategy. Formulating the gspéct



Fig. 12. Cuprite dataset: abundance maps estimated by SUNt®A), APU (middle) and SUDAP (bottom).

unmixing problem as a projection onto the intersection of APPENDIX

convex sets allowed Dykstra’s algorithm to be used to comput SOLVING (13)WITH KKT CONDITIONS

the solution of this unmixing problem. The projection was

implemented intrinsically in a subspace, making the pregosfollowing the KKT conditions, the problem (13) can be

algorithm computationally efficient. In particular, theoppsed reformulated as finding* satisfying the following conditions
unmixing algorithm showed similar performance comparing t

state-of-the-art methods, with significantly reduced efiea u* —z+ub _T/\dj =0
time, especially when the number of endmembers is small or giTu* % 0
moderate, which is often the case when analyzing conveaition u}\ ; 1 (21)
multi-band images. Future work includes the generalinatio = 0
the proposed algorithm to cases where the endmember matrix T ‘j 2 0
is rank deficient or ill-conditioned. Adiu® = 0.
Direct computations lead to
uw'=z—-z+Az (22)
where
Z = ¢ (sz — 1)
2
¢ = b/|bl;
Az = TiS;
n = max{0,—d7 (z—2) /|Pd;]s} @D
si = Pd;/|[Pdi|2

P = l,,—bb"/|b];.
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Computing the projection of; for j = 1,--- ,n can be
conducted in parallel, leading to the following matrix upela "
rule

U; = HSm/\[q-, (Z)
=Z—-7Z+s;tF (24) 7

=1Is(Z) +s;7F

where
[3]

4

Z=c(b'z-17)
! = max{0, -l (Z - Z) /|Pd;]2}.

T, =

As a conclusion, the updating rules (24) and (18) only differ
by the way the projectiofils(Z) onto S has been computed.
However, it is easy to show thaks(Z) = Z — Z used in (24) g
is fully equivalent tolls(Z) = c1Z + P(Z — c17) required
in (18).

Remark. It is worthy to provide an alternative geometric (6]
interpretation of the KKT-based solutiof22). First, z — z
is the projection ofz onto the affine setS. Second, if the
projection is inside the seV;, which meansi? (z — z) > 0,
then the projection ofz onto the intersectionS N A is
z — z. If the projection is outside of the saf;, implying that
d! (z—z) < 0, a moveAz inside the affine sef should
be added taz — z to reach the sef\;. This moveAz should
ensure three constraints: 1z keeps the point — z + Az
inside the affine sef, 2) z—z+ Az is on the boundary of the [l
setV;, and 3) the Euclidean norm dfz is minimal. The first
constraint, which can be formulated &' Az = 0, is ensured
by imposing a move of the forlhz = Pw whereP = VV 7T
is the projector onto the subspa orthogonal tob. The
second constraint is fulfilled whed? (z —z + Az) 0,
leading tod? Pw = —§;, whered; = dI (z — z). Thus, due
to the third constraintw can be defined as

(7]

(8]

[10]

[11]

[12]

w = argmin |Pv|? s.t. d/Pw = —4;. (25)
v

Using the fact thafP is an idempotent matrix, i.eP? = P, [13]
the constrained optimization problem can be solved analyti
cally with the method of Lagrange multipliers, leading to

(26)

) [14]

w=—6(d/Pd;) d,

and Az = Pw = —5i(diTPdi)_1Pdi. This final result is
consistent with the move defined (22) and (23) by setting
7 = max{0, — g} ands; = Pd;/||Pd;|». Recall that

|Pd;|; = (d7Pd;) sinceP”P = P.

[15]
[16]
[17]
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